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ABSTRACT

The field of genomics has been revolutionized by next generation sequencing. NGS technology is likely to play an important 
role in the field of veterinary medicine and animal husbandry. The feasibility of sequencing genomes at a much faster rate and 
with greater precision has been made possible with the advent of newer methods. In the current review, we describe the various 
sequencing methods available and also discuss select areas of biology where application of next generation sequencing would 
open a whole new avenue in veterinary research.
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Evolution of Next-Generation Sequencing

The discovery of the DNA structure (Watson, 1953) and 
the subsequent advent of DNA sequencing (Sanger et al., 
1977) paved the way for the study of genomes. The DNA 
sequences of model organisms and humans were elucidated 
through various innovative techniques. However, it was the 
next-generation sequencing (NGS) methodologies which 
accelerated the field of genomics. In the mid-2000’s, the 
pyrosequencing-based approach was introduced, and over 
the years, the cost and time of whole-genome sequencing 
have come down drastically (Margulies et al., 2005). The 
NGS has also been instrumental in our understanding of 
health and disease at the molecular level. In this review, 
we address the merits and limitations of some of the major 
platforms of NGS and the applications thereof.

Sanger’s dideoxynucleotide chain termination method

In this classical method, the DNA polymerase is tricked 
to incorporate a modified nucleotide (dideoxynucleotides) 
with a 3’ hydrogen atom instead of 3’ hydroxyl group 
which is required for chain elongation. Once these 

dideoxynucleotides are incorporated, the DNA chain 
elongation terminates. The dNTP molecules used in the 
reaction are radio-labelled with 32P, and four dNTPs with 
one of the modified nucleotides are added per reaction. 
These samples are resolved on a polyacryamide gel and the 
images are captured on X-ray films. The major drawback 
with this method is the lack of automation. Introduction 
of thermostable DNA polymerases (Saiki et al., 1985)” D, 
florescent dye-labelled dideoxynucleotides (terminators) 
(Prober et al., 1987) and capillary sequencing (Marsh et 
al., 1997) were the major improvements of this method, 
and these facilitated the unraveling of reference genomes 
of model organisms. These modifications formed the 
foundation for NGS.

Next-Generation Sequencing (NGS)

Unlike Sanger’s sequencing, NGS is robust and does 
not rely on prior knowledge about flanking sequences or 
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cloning of the DNA fragments. The platform technologies 
available for NGS can be classified based on the 
chemistry involved, into (a) sequencing by synthesis 
and (b) sequencing by ligation and (c) Single molecule 
sequencing. The different NGS platforms are summarized 
in Table 1.

(a) Sequencing by synthesis (SBS)

In sequencing by synthesis method, DNA is fragmented 
and clonally amplified. This is termed as library 
preparation. During sequencing, addition of nucleotides 
by the polymerase generates signals which are read by the 
instrument. The SBS can be further classified as single-
nucleotide addition or cyclic reversible termination.

The single-nucleotide addition approach is followed by 454 
pyrosequencing (454 Life Sciences, Roche) and Ion Torrent 
(Life Technologies) techniques. While pyrosequencing 
method relies on the detection of bioluminescence 
signal generated due to the pyrophosphate released upon 
nucleotide incorporation (Margulies et al., 2005), the Ion 
Torrent platform detects pH change due to release of H+ 
ions during dNTP incorporation (Rothberg et al., 2011). 
Ion Torrent utilizes a semiconductor sensor rather than an 
optical sensor to detect the H+ ions released.

The cyclic reversible termination method utilizes 
cleavable fluorescent terminator molecules which block 
the chain elongation (Guo et al., 2008; Ju et al., 2006). 
Similar to Sanger’s sequencing, a mixture of all four 
native nucleotides and 3’-blocked dNTP’s are added 
each time and the unbound dNTP’s are removed by 
washing. The fluorescent signals from the surface identify 
the incorporated dNTP. The blocking group and the 
fluorophore is removed before the beginning of the new 
cycle. Illumina and GeneReader platform utilize this 
method for NGS with certain differences. While Illumina 
platform incorporates each template DNA with the 
fluorophore-tagged dNTP, the GeneReader platform uses 
adequate labelled dNTP’s to attain signal for identification 
(Smith, 2011).

(b) Sequencing by ligation

The Sequencing by Oligonucleotide Ligation and Detection 
(SOLiD) and Complete genomics platforms follow the 
sequencing by ligation approach for NGS. The labelled 

probes and anchor sequences are hybridized and ligated to 
the DNA strand. The labelled probes can be of one-base or 
two-base type. The two-base-encoded probes are utilized 
by the SOLiD platform where each fluorescent signal 
symbolizes a dinucleotide (Valouev et al., 2008). Despite 
its early popularity, the short read length of 75 bp greatly 
limited its use. The Complete genomics technology of the 
Beijing Genomics Institute utilizes a probe-anchor ligation 
approach. Here, DNA templates are enriched in solution 
by ligating it to anchor, circularization and cleavage. Three 
rounds of ligation, circularization and cleavage add four 
adapters. The rolling cycle amplification of the circular 
DNA generates concatamers called nanoballs which are 
then immobilized on a pattern flow cell and sequenced 
(Drmanac et al., 2010).

(c) Single-molecule sequencing

Two platforms produce real-time reads with single-
molecule. The Pacific Biosciences platform employs 
phospho-linked fluorescent nucleotides which upon 
incorporation produce signals monitored through a zero-
mode waveguide detector (Eid et al., 2009). The Oxford 
Nanopore Technology introduced the fourth-generation 
DNA sequencing technology. Unlike other platforms, the 
nanopore sequencer does not hybridize or incorporate 
labelled dNTP. The native single-stranded DNA is passed 
through a protein pore in the presence of electric current. 
The DNA translocation into the pore causes a block in 
the voltage which is measured. The shift in the voltage 
is characteristic of particular DNA sequence in the pore. 
About ~70 bp per second can be sequenced using this 
system. Latest addition to the nanopore technology is the 
CsgG bacterial amyloid secretion pore based sequencer 
with higher sequencing accuracy (Brown and Clarke, 
2016), achieving DNA translocation rate upto 250 bases 
per second (Carter and Hussain, 2017). Both Nanopore 
and Pacific Biosciences platform technologies can read 
10 to 100 kb of single-stranded DNA, but error rates are 
also higher with both the platforms. However, in nanopore 
sequencing technology the addition of specific hairpin 
adapter to join the two DNA increase the accuracy of 
the reads. Even though error rates are higher than other 
platforms, the nanopore sequencer is a portable and low-
cost equipment, besides other advantages such as rapidity 
of library preparation and real-time data generation.
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Table 1: Comparison of different NGS platforms

Platforms Read Length Throughput Run time
Sequence by synthesis

Illumina 25 to 300 bp 540 Mb to 900 
Gb

4 hours to 11 
days

454- Life Sciences 400 to 700 bp 
average reads 35 to 700 Mb 10 to 23 

hours
Sequence by ligation
SOLiD 50 to 75 bp 80 to 160 Gb 6 to 10 days
Complete genomics 
technology 50 to 100 bp 160 to 320 Gb 24 hours

Single-molecule real-time long reads

Pacific Biosciences 8 to 12 Kb 500 Mb to 7 
Gb 0.5 to 6 hours

Oxford Nanopore Up to 200 Kb Up to 1.5 Gb 50 minutes to 
48 hours

Table adapted from (Goodwin et al., 2016).

Application of NGS in Veterinary Science

The high-throughput sequencing data generated by the 
various platform technologies are unbiased as it reports 
the sequence of all nucleotides present in the original 
sample. It can be applied in multiple ways in veterinary 
science which are mentioned below.

Conservation of animals

India is a diverse country with a wide variety of domestic 
and wild animals. The diversity in the germplasm may be 
one of the reason for disease resistance and other desired 
characters observed in indigenous breeds. Whole genome 
sequencing of domestic and wild animal species can help 
record their genetic information and conserve the native 
breeds for the future. Sequence data with other gene 
manipulation techniques like CRISPR-Cas9 may help 
in improving production of indigenous breeds without 
losing genetic diversity. Unlike PCR based methods (An 
et al., 2007; Marin et al., 2009), NGS is a sequence-
independent detection technique and can be used for 
forensic identification of endangered animals.

Characterization of gut microbiota of bovine and other 
ruminants

Our knowledge about the diversity of the microorganisms 
present in the rumen is limited because most of them cannot 

be isolated and cultured under laboratory conditions. 
Rumen microbiota consists of obligate anaerobic fungi, 
bacteria and protozoa. Till date, six genera (Neocallimastix, 
Piromyces, Caecomyces, Orpinomyces, Anaeromyces, 
and Cyllamyces) of obligate anaerobic fungi have been 
isolated from rumen (Ho, 1995; Ozkose, 2001), with 
only two reports on Cyllamyces species (Ozkose, 2001; 
Sridhar, 2007). Different NGS platforms were utilized to 
assess the rumen microbial community in cows. While 
most of the studies were related to the rumen bacterial 
diversity (Edrington et al., 2012; Jami et al., 2013; Zhou 
et al., 2017), very few of them studied the composition of 
rumen fungal community (Dill-McFarland et al., 2017). 
Identification and characterization of rumen microbiota 
will help in developing better nutritional systems.

Vaccine industry

The NGS data could be of help at different levels in vaccine 
industry. In case of bacterial vaccines, the whole genome 
sequencing can establish the identity of the bacterial strain 
used in the vaccine. Bacterial strains can also be verified 
for batch-to-batch consistency as well as to validate the 
absence of extraneous agents.

When compared to bacterial vaccines, NGS has a wider 
application in viral vaccines. First, the vaccine material 
is supposed to be devoid of anything other than the 
antigenic material. To avoid the unintentional introduction 
of adventitious agents in the vaccine manufacturing 
process, detailed characterization of seed stocks, final 
bulk and formulated vaccine is necessary (Kumar et al., 
2012). Specifically, these materials must be free from 
adventitious agents such as bacteria, fungi, mycoplasma/
spiroplasma, mycobacteria, rickettsia, protozoa, parasites, 
transmissible spongiform encephalopathy (TSE) 
agents and viruses. Despite following stringent quality 
protocols, contamination of vaccines with extraneous 
agents can happen. Notable among these are (a) simian 
virus-40 contamination of the poliovirus and adenovirus 
vaccines (Geissler et al., 1985; Hilleman, 1998; Lewis, 
1998; Sangar et al., 1999), (b) bacteriophage (φV−1) 
contamination in poliovirus vaccine and measles, mumps 
and rubella (MMR) vaccine (Haselkorn et al., 1978), (c) 
reverse transcriptase activity in MMR vaccine (Pyra et 
al., 1994; WHO, 1998), (d) bovine viral diarrhea virus 
in mumps, mumps and measles, and MMR vaccines 
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(Studer et al., 2002), (e) avian retroviruses in yellow fever 
vaccine (Hussain et al., 2003), (f) avian leucosis virus 
in measles and mumps vaccine (Tsang et al., 1999), (d) 
porcine circovirus 1 contamination of rotavirus vaccine 
(Victoria et al., 2010). Several veterinary vaccines have 
been reported to be contaminated with adventitious agents 
such as (a) feline endogenous retrovirus in feline and 
canine attenuated vaccines (Yoshikawa et al., 2014), (b) 
reticuloendotheliosis virus in Marek’s disease vaccine 
(Takagi et al., 1996), (c) bovine viral diarrhoea virus in 
swine fever vaccines (Wensvoort and Terpstra, 1988), and 
(d) bluetongue virus in canine vaccines (Akita et al., 1994; 
Evermann et al., 1994; Wilbur et al., 1994), lumpy skin 
disease and sheep pox vaccines (Bumbarov et al., 2016). 
Apart from identifying the adventitious agents, NGS can 
also establish the identity of the vaccine stains.

Reversion to virulence is one of the major concerns with 
live attenuated vaccines. Different nucleic acid tests are 
used to identify the virulent markers in vaccine stains. In 
general, limited data is generated using nucleic acid based 
techniques i.e., Mutant Analysis by PCR and Restriction 
Enzyme Cleavage (MAPREC) test for poliovirus. NGS 
methods are applied to determine the mutations necessary 
for attenuation of poliovirus (Victoria et al., 2010). 
Similar methods can be used to detect virulent markers in 
vaccine viruses to improve the safety of vaccines. Several 
attenuated vaccines are employed for veterinary use, and 
their characterization by NGS can improve vaccine safety.

Diagnosis of infectious diseases and monitoring of 
outbreaks

Identification of infectious disease etiology is generally 
done by microscopy, microbiological, virological, 
immunological or molecular methods. Compared to 
the other methods, molecular methods have higher 
sensitivity and specificity. However, knowledge about 
genome sequence of the etiological agent is a prerequisite 
to use molecular methods such as PCR or RT-PCR. For 
differential diagnosis by classical methods, several tests 
need to be done to confirm the etiological agent. In 
addition, availability of reagents such as special media, 
cell lines, antibodies, primers, and availability of validated 
methods are the major constrains in diagnosis of infectious 
agents. Quick and accurate diagnosis is important during 
disease outbreaks to devise strategies to control the spread 

of the disease in question. Unlike classical methods of 
diagnosis, where availability of agent-specific diagnostics 
is a prerequisite, NGS is a generic method that can be 
applied to identify any type of infectious agent i.e., viruses, 
bacteria, fungus, protozoa.

NGS is a highly sensitive method for pathogen identification 
typing. We have used Ion torrent platform to sequence 
RNA and DNA isolated from pharyngeal mucosa during 
a disease outbreak investigation in commercial poultry. 
Apart from genome sequence of the causative agents, we 
could identify the genomes of some of the live vaccines 
used in poultry, several bacteriophages, and viruses of fish 
and maize. The latter two genomes probably originated 
from the poultry feed (unpublished data), and demonstrate 
the power of this technology in diagnostics. This makes 
NGS a more suitable test for identification of disease 
causing agents.

NGS is also helpful in identification of mixed infections 
especially of those that reduce production or are 
immunosuppressive with no clear clinical symptoms. For 
example, pyrosequencing of DNA from post-weaning 
multisystemic wasting syndrome (PWMS) affected pig 
lymph node samples revealed the presence of torque teno 
virus and a novel boca-like parvovirus apart from the 
causative agent porcine circovirus 2 (Blomstrom et al., 
2010; Blomstrom et al., 2009). These complex conditions 
necessitate the regular use of NGS to establish concrete 
relation between pathogens and disease. Further, NGS is a 
good technology to identify, characterize and understand 
the epidemiology of non-cultivable infectious agents such 
as Jaagsiekte, a retrovirus of sheep.

We regularly isolate and type bluetongue virus (BTV) from 
field samples through conventional cell culture and RT-
PCR, respectively. Many times, we encounter difficulty in 
typing BTV isolates due to infections with mixed serotypes 
and emergence of a new variant which cannot be typed 
using the primers designed to identify the serotype by RT-
PCR. There are 27 BTV serotypes identified until now and 
geographical variants called topotypes are present within 
a serotype. The genomic variation due to diverse serotypes 
and topotypes adds to the complexity of typing (Reddy 
et al., 2016). We routinely use NGS for typing of BTV 
isolates which could not be typed due to lack of reagents. 
Now, NGS is becoming popular to identify new serotypes, 
topotypes, variants and reassortants (Boyle et al., 2012; 
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Chand et al., 2016; Lorusso et al., 2014; Minakshi et al., 
2012; Nomikou et al., 2015; Rao et al., 2013; Rao et al., 
2012b; Schulz et al., 2016; Yang et al., 2012).

In the Indian context, emergence of nephropathogenic avian 
infectious bronchitis virus (Bayry et al., 2005), porcine 
circovirus2 (Karuppannan et al., 2016), re-emerging BTV 
serotypes (Hemadri et al., 2016; Krishnajyothi et al., 
2016; Rao et al., 2016), avian influenza (Bhat et al., 2017; 
Nagarajan et al., 2017) and new variants of foot and mouth 
disease virus (Mahapatra et al., 2016; Rudreshappa et al., 
2012; Yuvaraj et al., 2013), and porcine respiratory and 
reproductive syndrome virus (PRRSV) (Rajkhowa et al., 
2015) are some examples where NGS would have helped.

Antimicrobial resistance to antibiotics is seen as one of 
the greatest threats in Human and veterinary practice. 
Bacteria can genetically evolve by introducing mutations 
in genes that encode proteins that are targets for antibiotics 
and by acquiring foreign DNA coding for resistance 
determinants. Various NGS methods were applied to 
detect antibiotic resistance markers in Escherichia coli, 
Bacillus anthracis, Yersinia pestis, Francisella tularensis 
and Mycobacterium tuberculosis (Daum et al., 2012; 
Stefan et al., 2016; Veenemans et al., 2014). Using NGS 
data for detection of the many genes involved in antibiotic 
resistance/ sensitivity of different strains. Species/ general 
of bacteria present in a clinical sample yields far more 
information from a single test than other methods like 
culture, biochemical identification, PCR, microarrays 
and traditional antibiograms and does not require prior 
knowledge of the resistance phenotype of the isolate(s). 
However, for most species of bacteria, insufficient 
data about antibiotic resistance/ sensitivity genes and 
mechanism involved is known and hence, data need to 
be generated to use NGS-inferred antibiotic resistance/ 
sensitivity to guide clinical decisions (Ellington et al., 
2017). The current cost and speed of NGS is prohibitive 
to use NGS for testing genotypic antibiograms. However, 
with the advent of faster and affordable NGS methods like 
Nanopore, it is possible to identify antibiotic resistance 
markers in clinical samples that can help in therapeutic 
decisions in critical cases (ONT, 2017).

Although NGS cannot be used as routine test for disease 
diagnosis due to cost and time required, it will become 
an unavoidable alternative at least for identification of 
the pathogen. With the development of new portable and 

affordable nanopore technology of NGS, it is possible to 
use this technology as routine diagnostic test in the near 
future.

Identification of exotic diseases

Diseases can spread from one country to another through 
various routes and one of the controllable routes is the 
import of animals and animal products. To control disease 
spread by movement of animals and animal products, 
countries implement import protocols mostly guided by 
World Organization for Animal Health (OIE). As per the 
OIE terrestrial animal health code, the live animal imports 
require the health certificate of the animals for diseases 
(mostly infectious diseases) from the exporting county. To 
control transboundary movement of diseases, pre-export 
testing and post-import quarantine is being practiced by 
most of the countries. Most of these tests are serology- 
or nucleic acid-based. In case of RNA viruses, where 
nucleic acid diversity is more, primers designed for one 
geographical area may not detect the viruses from other 
geographical area (Maan et al., 2012a; Mertens et al., 
2007; Reddy et al., 2016). Apart from that, the test needs 
to be done against pathogens. For example, import of 
live pigs into India requires the pre-export screening of 
the animals for African swine fever, porcine brucellosis, 
classical swine fever, porcine respiratory and reproductive 
syndrome, porcine epidemic diarrhoea virus, porcine 
delta corona virus, transmissible gastroenteritis, swine 
vesicular disease, swine influenza A virus, Tescho virus 
encephalomyelitis, and Aujeszky’s disease (DAHD, 
2017).The animals are quarantined in India for 30 days 
and observed for any symptoms of disease before handing 
it over to the consignee.

Despite pre-import and post quarantine tests, several 
incidences of entry and establishment of causative agents 
from other countries are reported from India. These 
include exotic serotypes and topotypes of BTV (Gollapalli 
et al., 2012; Maan et al., 2012b; Rao et al., 2016; Rao et 
al., 2012a; Susmitha et al., 2012), and highly pathogenic 
strain of PRRSV similar to Chinese isolates, (Rajkhowa et 
al., 2015). Currently, lumpy skin disease (LSD) is being 
considered as one of the future threats to Indian livestock 
industry. LSD, once considered as African disease, has 
now spread to throughout the middle-eastern countries 
in the last quarter century (Ali et al., 1990; House et al., 
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1990; OIE, 2017; Yeruham et al., 1995) and affected 
some of the European and central Asian countries (OIE, 
2017). Recent reports of LSD positive samples from some 
districts of Odisha (OIE, 2019) is a cause of concern. 
There is an immediate need for an effective control and 
advanced surveillance measure to contain the spread of 
the disease. LSDV, the causative agent of LSD is closely 
related to sheep pox and goat pox viruses and it is difficult 
to differentiate these viruses by PCR-based or serological 
methods. It is further complicated by the presence of 
a clinically similar disease called pseudo-lumpy skin 
disease (PLSD) caused by bovine herpesvirus-2. We 
have used NGS to identify BHV-2 from skin samples of 
cattle affected with PLSD and successfully identified the 
causative agent, and similar methods can be used to screen 
suspected samples for quick and accurate diagnosis.

Recent reports of African swine fever (ASF) outbreaks from 
various Asian countries (OIE, 2019) pose a threat to India. 
The current wave of ASF started from China in August 
2018. By 2019, the outbreaks of ASF were recorded from 
Mongolia (in January), Vietnam (in February), Cambodia 
(in April), Lao PDR (in June) and Myanmar (in August). 
India shares its eastern border with Myanmar, there are 
chances that the African swine fever (ASF) may seep in 
to the north-eastern states of India. As the pig population 
is more in the north-eastern states of India, the advent of 
ASF will have substantial economic impact.

Introduction of new pathogens into a naïve population 
may cause huge economic losses and it is important to 
identify and contain the exotic diseases before they get 
established and spread through the length and breadth of 
the country. Here, NGS has a clear advantage over other 
classical methods of pathogen identification due to its 
speed, sensitivity and generic nature.

CONCLUSION

NGS technology is likely to play an important role in the 
field of veterinary medicine and animal husbandry. In 
veterinary services, NGS is expected to play a vital role in 
disease diagnosis and control. Although most of the current 
NGS technologies are expensive to establish and require 
highly skilled molecular biologists and bioinformaticians, 
advent of technologies like Nanopore, which is fast 
and portable may become a disruptive technology in 
veterinary and medical diagnosis, replacing most of the 

current technologies being used in this field. This portable 
platform has played a crucial role in the monitoring of 
outbreaks of Salmonella enterica (Quick et al., 2015) 
and Ebola hemorrhagic fever (Quick et al., 2016). Unlike 
platforms such as Illumina, sequence error rates are higher 
in nanopore-based sequencing, but for the purpose of 
diagnosis, errors in sequence are tolerable provided the 
test could precisely identify the causative agent. With the 
traits of a cost-effective, rapid and portable alternative for 
DNA sequencing, technologies like nanopore sequencing 
will be necessary for disease monitoring and diagnostic 
laboratory sooner or later.
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